www.mymathscloud.com

www.mymathsclou	Other names
Write your name here	addi.Co
Surname	Other names
Pearson Edexcel Level 3 GCE	Candidate Number
Further Mathe Advanced Subsidiary Further Mathematics options 25: Further Mechanics 1 (Part of options C, E, H and J)	matics
Thursday 17 May 2018 – Afternoon	Paper Reference 8FM0-25
You must have: Mathematical Formulae and Statistical Tables, o	Total Marks

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- The total mark for this part of the examination is 40. There are 4 questions.
- The marks for **each** question are shown in brackets use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P60206A ©2018 Pearson Education Ltd. 1/1/1/

Whenever a numerical value of g is required, take $g = 9.8 \,\mathrm{m\,s^{-2}}$ and give your answer to either 2 significant figures or 3 significant figures.

Answer ALL questions. Write your answers in the spaces provided.

1. A small ball of mass 0.3 kg is released from rest from a point 3.6 m above horizontal ground. The ball falls freely under gravity, hits the ground and rebounds vertically upwards.

In the first impact with the ground, the ball receives an impulse of magnitude 4.2 Ns. The ball is modelled as a particle.

(a) Find the speed of the ball immediately after it first hits the ground.

(b) Find the kinetic energy lost by the ball as a result of the impact with the ground.

(3)

```
(a) Let's use swat to get speed right before it hits the ground.
```

```
(+1) S = 3.6
                  Use comula:
```

$$u = 0$$
 $V^2 = u^2 + 2as$

$$Q = 9.8 \text{ms}^2$$
 $V^2 = (0)^2 + 2(9.8)(3.6)$

Impulse is the Change in momentum

Formula for change in momentum:

we take Tan positive and before it move downwards: negative

$$\Delta KE = KE^{I} - KE^{E}$$

Formula for Kinetic Energy:

Substitute:
$$\Delta KE = \frac{1}{2}(0.3)(8.4)^2 - \frac{1}{2}(0.3)(5.6)^2 \text{ MIAI}$$
$$= \frac{1}{3}(0.3)[8.4]^2 - 5.6^2$$

$$=\frac{1}{3}(0.3)[8.4-5.6]$$

= 5.88 J lost A1

Units for energy, Joules

2

DO NOT WRITE IN THIS AREA

Question 1 continued
(Total for Question 1 is 8 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

2.

Figure 1

Figure 1 shows a ramp inclined at an angle θ to the horizontal, where $\sin \theta = \frac{2}{7}$

A parcel of mass $\frac{4 \text{ kg}}{4 \text{ kg}}$ is projected, with speed 5 m s^{-1} , from a point A on the ramp. The parcel moves up a line of greatest slope of the ramp and first comes to instantaneous rest at the point B, where AB = 2.5 m.

The parcel is modelled as a particle.

The total resistance to the motion of the parcel from non-gravitational forces is modelled as a constant force of magnitude *R* newtons.

(a) Use the work-energy principle to show that R = 8.8

(4)

After coming to instantaneous rest at B, the parcel slides back down the ramp. The total resistance to the motion of the particle is modelled as a constant force of magnitude 8.8 N.

(b) Find the speed of the parcel at the instant it returns to A.

(3)

(c) Suggest two improvements that could be made to the model.

(2)

O NOT WRITE IN THIS AREA

Question 2 continued

(a)

*Work-Energy Principle: an increase of KE/GPE/EPE is caused by an equal amount of positive work done on the body(e.g. engine) and a decrease of KE/GPE/EPE is caused by an equal amount of negative work done on the body(e.g. friction).

* Remember the work-energy formulae: __final grav. potential

Either: WD by force + KE; + GPE; = KEF + GPEF + WD against friction

work done initial Kinetic initial grav. final kinetic work lost to friction

potential

final grav. potential

OR: WD by force + KE; + GPE; - WD by friction = KEF + GPEF

work done initial Kinetic initial grav. We <u>Subtract</u> final tinetic

potential this since it leaves

the system as heat!

* Formulae for KE and GPE:

KE= 1 mv 2 velocity GPE= mgh - change in height

mass - q=9.8ms²

<u>Diagram</u>

eference Get l

 $\frac{3^{2.5}}{h^{2}} = \frac{\sin \frac{\pi}{h}}{h} = \frac{2}{3} = \frac{h}{2.5}$ $h = \frac{5}{3}$

 $\frac{1}{2}(4)(5)^{2} + 49(0)^{2} - 2.5R = \frac{1}{2}(4)(0)^{2} + 49(h)$ Solve for R:

Substitute:

$$2(15) - 1.52 = 49 \times \frac{5}{7}$$

(b) We will use the Work-energy principle again. As it moves from A to A, DGPE=0 (as it returns to the same neight). We only need to consider KE and the work done x2(Rup+down!)

Substitute: $\frac{1}{2}(4)v^2 = \frac{1}{2}(4)(5)^2 - 2(2.5)(8.8)$ MAA1

A1 V=1.7ms' Speed when it returns to A

www.mymathscloud.com Question 2 continued	AM MOR	25
Question 2 continued (c) Make resistance variable (e.g. proportional to speed) Don't model the parcel on a particle and consider its dimensions B1	DO NOT WRITE IN THIS AREA	DO NOT WRITE IN THIS AREA
	DO NOT WRITE IN THIS AREA	DO NOT WRITE IN THIS AREA
	DO NOT WRITE IN THIS AREA	DO NOT WRITE IN THIS AREA

6

DO NOT WRITE IN THIS AREA

Question 2 continued
(Total for Question 2 is 9 marks)

DO NOT WRITE IN THIS AREA

3. A van of mass 750 kg is moving along a straight horizontal road. At the instant when the van is moving at $vm s^{-1}$, the resistance to the motion of the van is modelled as a force of magnitude $\lambda v N$, where λ is a constant.

The engine of the van is working at a constant rate of 18 kW. At the instant when v = 15, the acceleration of the van is 0.6 m s^{-2}

(a) Show that $\lambda = 50$

(4)

The van now moves up a straight road inclined at an angle to the horizontal, where

$$\sin \alpha = \frac{1}{15}$$

At the instant when the van is moving at vms^{-1} , the resistance to the motion of the van from non-gravitational forces is modelled as a force of magnitude 50v N. When the engine of the van is working at a constant rate of 12 kW, the van is moving at a constant speed Vms^{-1}

(b) Find the value of *V*.

(5)

It's accelerating : use 2Fx=ma:

$$D - 15_A = 750(0.6)$$
 Solve for A M1
1200 - 15_A = 450 A1

DO NOT WRITE IN THIS AREA

Question 3 continued	
(b) Diagram	To get D we will use Power.
	Formula for Power:
35003	Power (w) $\sim P = Dy$
50V a) 7509	Driving force(N) Velocity(mi')
	P=12kW-x1000 → 12000
	v = V D = 12 000
	D = D
As the Speed is con	Stant use IFx=0: M1
	D = 750g sina + 50V
	12 000 = 50V + 490 M
	12 000 = 5042 + 490V
	0 = 542+494-1200 Quadratic A1
Use Quadratic Form	
	2a
	- 49 ± (99)2-4(5X-1200) = V
	2(5)
	V= 11.3 ms Speed of van M1A1

www.mymathscloud.com Question 3 continued	MANA	
Question 3 continued	DO NOT WRITE IN THIS AREA	DO NOT WRITE IN THIS AREA
	DO NOT WRITE IN THIS AREA	DO NOT WRITE IN THIS AREA
	DO NOT WRITE IN THIS AREA	DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 3 continued
(Total for Question 3 is 9 marks)

4. A particle P of mass 3m is moving in a straight line on a smooth horizontal floor. A particle Q of mass 5m is moving in the opposite direction to P along the same straight line.

The particles collide directly.

Immediately before the collision, the speed of P is 2u and the speed of Q is u. The coefficient of restitution between P and Q is e.

(a) Show that the speed of Q immediately after the collision is $\frac{u}{8}(9e+1)$

(6)

(b) Find the range of values of *e* for which the direction of motion of *P* is not changed as a result of the collision.

(2)

When P and Q collide they are at a distance d from a smooth fixed vertical wall, which is perpendicular to their direction of motion. After the collision with P, particle Q collides directly with the wall and rebounds so that there is a second collision between P and Q. This second collision takes place at a distance x from the wall.

Given that $e = \frac{1}{18}$ and the coefficient of restitution between Q and the wall is $\frac{1}{3}$

(c) find x in terms of d.

(6)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

	٥
(a) <u>Diagram</u>	Achac
Before $\stackrel{+}{\longrightarrow}$	After
24 Lu	VP VQ
(P) (Q)	(P) (Q)
3m Sm	3m 5m
conservation of un	conservation of linear momentum to get this. Lear momentum means: the total momentum before the as the total momentum after.
_	MAUA + MBUB = MAYA + MBVB
	initial velocity final velocity
Substitute:	3m(2u) + 5m(-u) = 3mvp + 5mVa
	u = 3Vp+5VQ Eq1 A1
We can use Ne	twton's Law of Restitution to get an equation.
Jewton's Law of R	Restitution states that: when two objects collide, their speeds a
	1) speeds before the collision and 2) the material from which they're mo
	C(NV-NB) = AB-NV WJ
	t of restitution initial speed final speed
Substitute:	
	3eu= VQ-Vp Eq2 A1
Solve simutaneously	Eq1 and Eq2: (we're looking for Uq)
	u = 3Vp+5VQ
	- Vp [x3] Yeu = 3VQ-3Vp + elimination method
	- Up [x3] Yeu = 3VQ-3Vp + elimination method Yeu + u = 8UQ
3eu= VQ	$-Vp[x3] \text{Qeu} = 3V_Q - 3V_P \text{elimination method}$ $\text{Qeu} + u = 8V_Q$ $u(\text{Qe} + 1) = 8V_Q$ $V_Q = \frac{u}{8}(\text{Qe} + 1) \text{hence shown M1A1}$
	$-Vp[x3] \text{Qeu} = 3V_Q - 3V_P \text{elimination method}$ $\text{Qeu} + u = 8V_Q$ $u(\text{Qe} + 1) = 8V_Q$ $V_Q = \frac{u}{8}(\text{Qe} + 1) \text{hence shown M1A1}$ $V_P = V_Q - 3eu$
3eu= VQ	-Vp [x3] $9eu = 3VQ - 3Vp$ + elimination method $9eu + u = 8VQ$ $9eu + $
3eu= VQ (b) Let's get Vp:	- $V_P \times 31$ $Y_Q = 3V_Q - 3V_P$ $Y_Q = U_Q \times 10^2 = 8 V_Q$ $V_Q = U_Q \cdot (9e+1) \text{hence shown M1A1}$ $V_P = V_Q - 3eu$ $V_P = \frac{4}{8} \cdot (9e+1) - 3eu$ $V_P = \frac{4}{8} \cdot (9e+1) - 3eu$ $V_P = \frac{4}{8} \cdot (9e+1) - 3eu$
3eu= VQ	- $V_P \times 31$ $V_Q = 3V_Q - 3V_P$
3eu = VQ (b) Let's get Vp: For it to not change dir	- $V_P \times 31$ $Y_Q = 3V_Q - 3V_P$ the elimination method $V_Q = \frac{U}{8} (9e+1)$ hence shown M1A1 $V_P = V_Q - 3eu$ $V_P = \frac{U}{8} (9e+1) - 3eu$ $V_P = \frac{9eu}{8} - 3eu + \frac{1}{8} \rightarrow V_P = \frac{U}{8} (1 - 15e)$

Range of e MIA1

0 8 9 < 1

Question 4 continued

Get WQ:
$$\frac{1}{3} \times \frac{3u}{16} = \frac{u}{16}$$
 (and it changes direction)
$$w_Q = \frac{u}{16}$$

We will use time to get distance as time = distance speed

For Q to wall and back: towall

$$\frac{d}{\frac{3u}{16}} + \frac{x}{\frac{u}{16}} = \frac{16d}{3u} + \frac{16x}{u} = t \text{ time for Q from first to 2nd collision}$$

For P, up to point x:

distance = d-x - Substitute:
$$t = \frac{d-x}{48} = \frac{48(d-x)}{x} = t$$
 time for P to get to 2nd collision

Speed = $\frac{u}{48}$

Equate the times for Pand a (as those are the times taken to reach the same point (the spot of collision 2) they must be equal).

$$\frac{16d}{34} + \frac{16x}{4} = \frac{48(d-x)}{34}$$

$$16d + 48x = 144(d-x)$$

$$x = \frac{128}{192} d$$

$$x = \frac{2}{3} d$$
x in terms of d

M1A1

DO NOT WRITE IN THIS AREA

Question 4 continued

Question 4 continued
(Total for Question 4 is 14 marks)
TOTAL FOR FURTHER MECHANICS 1 IS 40 MARKS